Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 303
Filtrer
1.
Plant Cell Physiol ; 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38619131

RÉSUMÉ

Brassinosteroids (BRs) are plant steroidal hormones that play crucial roles in plant growth and development. Accurate quantification of BRs in plant tissues is essential for understanding their biological functions. This study presents a comprehensive overview of the latest methods used for the quantification of BRs in plants. We discuss the principles, advantages, and limitations of various analytical techniques, including immunoassays, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) that are used for the detection and quantification of BRs from complex plant matrices. We also explore the use of isotopically labeled internal standards to improve the accuracy and reliability of BR quantification.

2.
ACS Chem Neurosci ; 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38655788

RÉSUMÉ

Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 µL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 µmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.

3.
Exp Hematol Oncol ; 13(1): 34, 2024 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-38528594

RÉSUMÉ

BACKGROUND: Mantle cell lymphoma (MCL) is a chronically relapsing malignancy with deregulated cell cycle progression. We analyzed efficacy, mode of action, and predictive markers of susceptibility to palbociclib, an approved CDK 4/6 inhibitor, and its combination with venetoclax, a BCL2 inhibitor. METHODS: A panel of nine MCL cell lines were used for in vitro experiments. Four patient derived xenografts (PDX) obtained from patients with chemotherapy and ibrutinib-refractory MCL were used for in vivo proof-of-concept studies. Changes of the mitochondrial membrane potential, energy-metabolic pathways, AKT activity, and pro-apoptotic priming of MCL cells were evaluated by JC-1 staining, Seahorse XF analyser, genetically encoded fluorescent AKT reporter, and BH3 profiling, respectively. MCL clones with gene knockout or transgenic (over)expression of CDKN2A, MYC, CDK4, and RB1 were used to estimate impact of these aberrations on sensitivity to palbociclib, and venetoclax. RESULTS: Co-targeting MCL cells with palbociclib and venetoclax induced cytotoxic synergy in vitro and in vivo. Molecular mechanisms responsible for the observed synthetic lethality comprised palbociclib-mediated downregulation of anti-apoptotic MCL1, increased levels of proapoptotic BIM bound on both BCL2, and BCL-XL and increased pro-apoptotic priming of MCL cells mediated by BCL2-independent mechanisms, predominantly palbociclib-triggered metabolic and mitochondrial stress. Loss of RB1 resulted in palbociclib resistance, while deletion of CDKN2A or overexpression of CDK4, and MYC genes did not change sensitivity to palbociclib. CONCLUSIONS: Our data strongly support investigation of the chemotherapy-free palbociclib and venetoclax combination as an innovative treatment strategy for post-ibrutinib MCL patients without RB1 deletion.

4.
Plant Cell ; 2024 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-38513609

RÉSUMÉ

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting ABA sensitivity. This involved expression of morph-specific transcription factors, hypoxia response and cell wall-remodeling genes, as well as altered abscisic acid (ABA) metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.

5.
Chem Biodivers ; 21(4): e202400235, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38412304

RÉSUMÉ

Over the last decades, soft corals have been proven a rich source of biologically active compounds, featuring a wide range of chemical structures. Herein, we investigated the chemistry of an alcyonarian of the genus Lemnalia (Neptheidae), specimens of which were collected from the coral reefs near Al Lith, on the south-west coast of Saudi Arabia. A series of chromatographic separations led to the isolation of 31 sesquiterpenes, featuring mainly the nardosinane and neolemnane carbon skeletons, among which three (13, 14 and 28) are new natural products. The metabolites isolated in sufficient amounts were evaluated in vitro in human tumor and non-cancerous cell lines for a number of biological activities, including their cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activities, as well as for their effect on androgen receptor (AR)-regulated transcription. Among the tested metabolites, compound 12 showed comparable neuroprotective activity to the positive control N-acetylcysteine, albeit at a 10-fold lower concentration.


Sujet(s)
Anthozoa , Antinéoplasiques , Sesquiterpènes , Animaux , Humains , Arabie saoudite , Océan Indien , Sesquiterpènes/composition chimique , Anthozoa/composition chimique , Antinéoplasiques/pharmacologie , Antinéoplasiques/métabolisme
7.
Eur J Med Res ; 29(1): 31, 2024 Jan 06.
Article de Anglais | MEDLINE | ID: mdl-38184629

RÉSUMÉ

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive deterioration of upper and lower motor neurons. A definitive diagnostic test or biomarker for ALS is currently unavailable, leading to a diagnostic delay following the onset of initial symptoms. Our study focused on cerebrospinal fluid (CSF) concentrations of clusterin, tau protein, phosphorylated tau protein, and beta-amyloid1-42 in ALS patients and a control group. METHODS: Our study involved 54 ALS patients and 58 control subjects. Among the ALS patients, 14 presented with bulbar-onset ALS, and 40 with limb-onset ALS. We quantified biomarker levels using enzyme-linked immunosorbent assay (ELISA) and compared the results using the Mann-Whitney U-test. RESULTS: Significant elevations in neurodegenerative markers, including tau protein (p < 0.0001), phosphorylated tau protein (p < 0.0001), and clusterin (p = 0.038), were observed in ALS patients compared to controls. Elevated levels of tau protein and phosphorylated tau protein were also noted in both bulbar and limb-onset ALS patients. However, no significant difference was observed for beta-amyloid1-42. ROC analysis identified tau protein (AUC = 0.767) and p-tau protein (AUC = 0.719) as statistically significant predictors for ALS. CONCLUSION: Our study demonstrates that neurodegenerative marker levels indicate an ongoing neurodegenerative process in ALS. Nonetheless, the progression of ALS cannot be predicted solely based on these markers. The discovery of a specific biomarker could potentially complement existing diagnostic criteria for ALS.


Sujet(s)
Sclérose latérale amyotrophique , Humains , Sclérose latérale amyotrophique/diagnostic , Clusterine , Retard de diagnostic , Protéines tau , Marqueurs biologiques
8.
J Biotechnol ; 381: 27-35, 2024 Feb 10.
Article de Anglais | MEDLINE | ID: mdl-38190851

RÉSUMÉ

Microalgae-derived biostimulants provide an eco-friendly biotechnology for improving crop productivity. The strategy of circular economy includes reducing biomass production costs of new and robust microalgae strains grown in nutrient-rich wastewater and mixotrophic culture where media is enriched with organic carbon. In this study, Chlorella sorokiniana was grown in 100 l bioreactors under sub-optimal conditions in a greenhouse. A combination of batch and semi-continuous cultivation was used to investigate the growth, plant hormone and biostimulating effect of biomass grown in diluted pig manure and in nutrient medium supplemented with Na-acetate. C. sorokiniana tolerated the low light (sum of PAR 0.99 ± 0.18 mol/photons/(m2/day)) and temperature (3.7-23.7° C) conditions to maintain a positive growth rate and daily biomass productivity (up to 149 mg/l/day and 69 mg/l/day dry matter production in pig manure and Na-acetate supplemented cultures respectively). The protein and lipid content was significantly higher in the biomass generated in batch culture and dilute pig manure (1.4x higher protein and 2x higher lipid) compared to the Na-acetate enriched culture. Auxins indole-3-acetic acid (IAA) and 2-oxindole-3-acetic acid (oxIAA) and salicylic acid (SA) were present in the biomass with significantly higher auxin content in the biomass generated using pig manure (> 350 pmol/g DW IAA and > 84 pmol/g DW oxIAA) compared to cultures enriched with Na-acetate and batch cultures (< 200 pmol/g DW IAA and < 27 pmol/g DW oxIAA). No abscisic acid and jasmonates were detected. All samples had plant biostimulating activity measured in the mungbean rooting bioassay with the Na-acetate supplemented biomass eliciting higher rooting activity (equivalent to 1-2 mg/l IBA) compared to the pig manure (equivalent to 0.5-1 mg/l IBA) and batch culture (equivalent to water control) generated biomass. Thus C. sorokiniana MACC-728 is a robust new strain for biotechnology, tolerating low light and temperature conditions. The strain can adapt to alternative nutrient (pig manure) and carbon (acetate) sources with the generated biomass having a high auxin concentration and plant biostimulating activity detected with the mungbean rooting bioassay.


Sujet(s)
Chlorella , Microalgues , Suidae , Animaux , Fumier , Biomasse , Acide acétique/métabolisme , Microalgues/métabolisme , Carbone/métabolisme , Acides indolacétiques/métabolisme
9.
ACS Chem Neurosci ; 15(3): 582-592, 2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38194490

RÉSUMÉ

Some pathological conditions affecting the human body can also disrupt metabolic pathways and thus alter the overall metabolic profile. Knowledge of metabolic disturbances in specific diseases could thus enable the differential diagnosis of otherwise similar conditions. This work therefore aimed to comprehensively characterize changes in tryptophan metabolism in selected neurodegenerative diseases. Levels of 18 tryptophan-related neuroactive substances were determined by high throughput and sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry in time-linked blood serum and cerebrospinal fluid samples from 100 age-matched participants belonging to five cohorts: healthy volunteers (n = 21) and patients with Lewy body disease (Parkinson's disease and dementia with Lewy bodies; n = 31), four-repeat tauopathy (progressive supranuclear palsy and corticobasal syndrome; n = 10), multiple system atrophy (n = 13), and Alzheimer's disease (n = 25). Although these conditions have different pathologies and clinical symptoms, the discovery of new biomarkers is still important. The most statistically significant differences (with p-values of ≤0.05 to ≤0.0001) between the study cohorts were observed for three tryptophan metabolites: l-kynurenine in cerebrospinal fluid and 3-hydroxy-l-kynurenine and 5-hydroxy-l-tryptophan in blood serum. This led to the discovery of distinctive correlation patterns between the profiled cerebrospinal fluid and serum metabolites that could provide a basis for the differential diagnosis of neurodegenerative tauopathies and synucleinopathies. However, further large-scale studies are needed to determine the direct involvement of these metabolites in the studied neuropathologies, their response to medication, and their potential therapeutic relevance.


Sujet(s)
Maladie d'Alzheimer , Troubles de l'homéostasie des protéines , Tauopathies , Humains , Tryptophane , Cynurénine , Sérum , Maladie d'Alzheimer/diagnostic , Marqueurs biologiques
10.
Plants (Basel) ; 13(2)2024 Jan 11.
Article de Anglais | MEDLINE | ID: mdl-38256760

RÉSUMÉ

The transition from seed to seedling represents a critical developmental step in the life cycle of higher plants, dramatically affecting plant ontogenesis and stress tolerance. The release from dormancy to acquiring germination ability is defined by a balance of phytohormones, with the substantial contribution of abscisic acid (ABA), which inhibits germination. We studied the embryonic axis of Pisum sativum L. before and after radicle protrusion. Our previous work compared RNA sequencing-based transcriptomics in the embryonic axis isolated before and after radicle protrusion. The current study aims to analyze ABA-dependent gene regulation during the transition of the embryonic axis from the germination to post-germination stages. First, we determined the levels of abscisates (ABA, phaseic acid, dihydrophaseic acid, and neo-phaseic acid) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Second, we made a detailed annotation of ABA-associated genes using RNA sequencing-based transcriptome profiling. Finally, we analyzed the DNA methylation patterns in the promoters of the PsABI3, PsABI4, and PsABI5 genes. We showed that changes in the abscisate profile are characterized by the accumulation of ABA catabolites, and the ABA-related gene profile is accompanied by the upregulation of genes controlling seedling development and the downregulation of genes controlling water deprivation. The expression of ABI3, ABI4, and ABI5, which encode crucial transcription factors during late maturation, was downregulated by more than 20-fold, and their promoters exhibited high levels of methylation already at the late germination stage. Thus, although ABA remains important, other regulators seems to be involved in the transition from seed to seedling.

11.
Plant J ; 117(5): 1432-1452, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38044809

RÉSUMÉ

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.


Sujet(s)
Arabidopsis , Nucléosides , Nucléosides/métabolisme , Azote/métabolisme , Amélioration des plantes , Plantes/métabolisme , Uridine/métabolisme , Arabidopsis/génétique
12.
Anal Chim Acta ; 1285: 342010, 2024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-38057057

RÉSUMÉ

BACKGROUND: The determination of plant hormones is still a very challenging analytical discipline, mainly due to their low concentration in complex plant matrices. Therefore, the involvement of very sensitive high-throughput techniques is required. Cytokinins (CKs) are semi-polar basic plant hormones regulating plant growth and development. Modern methods for CK determination are currently based on ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), which enables the separation of CK isomeric forms occurring endogenously in plants. Here, ultra-high performance supercritical fluid chromatography coupled with tandem mass spectrometry (UHPSFC-MS/MS) was used for the simultaneous determination of 37 CK metabolites. RESULTS: The chromatographic conditions were tested on three different columns with various retention mechanisms. Hybrid silica modified with 2-picolylamine was selected as the stationary phase. Several parameters such as column temperature, back pressure regulation, mobile phase composition and make-up solvent were investigated to achieve efficient separation of CK isomers and reasonable sensitivity. Compared to UHPLC-MS/MS, a 9-min chromatographic analysis using a mobile phase of supercritical CO2 and 5 mM ammonia in methanol represents a three-fold acceleration of total run time. The quantification limit of UHPSFC-MS/MS method was in the range of 0.03-0.19 fmol per injection and the method validation showed high accuracy and precision (below 15 % for most analytes). The method was finally applied to the complex plant matrix of the model plant Arabidopsis thaliana and the obtained profiles of CK metabolites were compared with the results from the conventional UHPLC-MS/MS method. SIGNIFICANCE: The presented work offers a novel approach for quantification of endogenous CKs in plants. Compared to the conventional UHPLC-MS/MS, the total run time is shorter and the matrix effect lower for the key CK metabolites. This approach opens the opportunity to utilize UHPSFC-MS/MS instrumentation for targeted plant hormonomics including other plant hormone families.


Sujet(s)
Chromatographie en phase supercritique , Spectrométrie de masse en tandem , Humains , Spectrométrie de masse en tandem/méthodes , Cytokinine , Facteur de croissance végétal , Chromatographie en phase supercritique/méthodes , Chromatographie en phase liquide à haute performance/méthodes , Plantes
13.
Plant Cell Physiol ; 2023 Oct 16.
Article de Anglais | MEDLINE | ID: mdl-37847120

RÉSUMÉ

B-Box-containing zinc finger transcription factors (BBX) are involved in light-mediated growth, affecting processes such as hypocotyl elongation in Arabidopsis thaliana. However, the molecular and hormonal framework that regulates plant growth through BBX proteins is incomplete. Here, we demonstrate that BBX21 inhibits the hypocotyl elongation through the brassinosteroid (BR) pathway. BBX21 reduces the sensitivity to 24-epiBL, a synthetic active BR, principally at very-low concentrations in simulated shade. The biosynthesis profile of BRs showed that two active BR -brassinolide (BL) and 28-homobrassinolide (28-homoBL)- and 8 of 11 intermediates can be repressed by BBX21 under white light (WL) or simulated shade. Furthermore, BBX21 represses the expression of CYTOCHROME P450 90B1 (DWF4/CYP90B1), BRASSINOSTEROID-6-OXIDASE 1 (BR6OX1, CYP85A1) and BR6OX2 (CYP85A2) genes involved in the BR biosynthesis in WL while specifically promoting DWF4 and PHYB ACTIVATION TAGGED SUPPRESSOR 1 (CYP2B1/BAS1) expression in WL supplemented with far-red (WL+FR), a treatment that simulates shade. In addition, BBX21 represses BR signalling genes such as PACLOBUTRAZOL RESISTANCE1 (PRE1), PRE3 and ARABIDOPSIS MYB-LIKE 2 (MYBL2), and auxin-related and expansin genes, such as INDOLE-3-ACETIC ACID INDUCIBLE 1 (IAA1), IAA4 and EXPANSIN 11 (EXP11) in short-term shade. By a genetic approach we found that BBX21 acts genetically upstream of BRASSINAZOLE-RESISTANT 1 (BZR1) for the promotion of DWF4 and BAS1 gene expression in shade. We propose that BBX21 integrates the BR homeostasis and shade-light signalling allowing the fine-tuning of hypocotyl elongation in Arabidopsis.

14.
Arch Pharm (Weinheim) ; 356(12): e2300378, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37797174

RÉSUMÉ

A library of 3-aryl-3-azetidinyl acetic acid methyl ester derivatives was prepared from N-Boc-3-azetidinone employing the Horner-Wadsworth-Emmons reaction, rhodium(I)-catalyzed conjugate addition of arylboronic acids, and subsequent elaborations to obtain N-unprotected hydrochlorides, N-alkylated and N-acylated azetidine derivatives. The compounds were evaluated for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity, revealing several derivatives to possess AChE inhibition comparable to that of the AChE inhibitor rivastigmine. The binding mode of the AChE inhibitor donepezil and selected active compounds 26 and 27 within the active site of AChE was studied using molecular docking. Furthermore, the neuroprotective activity of the prepared compounds was evaluated in models associated with Parkinson's disease (salsolinol-induced) and aspects of Alzheimer's disease (glutamate-induced oxidative damage). Compound 28 showed the highest neuroprotective effect in both salsolinol- and glutamate-induced neurodegeneration models, and its protective effect in the glutamate model was revealed to be driven by a reduction in oxidative stress and caspase-3/7 activity.


Sujet(s)
Maladie d'Alzheimer , Neuroprotecteurs , Humains , Butyrylcholine esterase/métabolisme , Acetylcholinesterase/métabolisme , Simulation de docking moléculaire , Relation structure-activité , Anticholinestérasiques/composition chimique , Maladie d'Alzheimer/traitement médicamenteux , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/composition chimique , Glutamates/usage thérapeutique
15.
J Neurochem ; 167(2): 168-182, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37680022

RÉSUMÉ

Neurodegenerative diseases are a broad heterogeneous group affecting the nervous system. They are characterized, from a pathophysiological perspective, by the selective involvement of a subpopulation of nerve cells with a consequent clinical picture of a disease. Clinical diagnoses of neurodegenerative diseases are quite challenging and often not completely accurate because of their marked heterogeneity and frequently overlapping clinical pictures. Efforts are being made to define sufficiently specific and sensitive markers for individual neurodegenerative diseases or groups of diseases in order to increase the accuracy and speed of clinical diagnosis. Thus said, this present research aimed to identify biomarkers in the cerebrospinal fluid (CSF) and serum (α-synuclein [α-syn], tau protein [t-tau], phosphorylated tau protein [p-tau], ß-amyloid [Aß], clusterin, chromogranin A [chromogrA], cystatin C [cyst C], neurofilament heavy chains [NFH], phosphorylated form of neurofilament heavy chains [pNF-H], and ratio of tau protein/amyloid beta [Ind tau/Aß]) that could help in the differential diagnosis and differentiation of the defined groups of α-synucleinopathies and four-repeat (4R-) tauopathies characterized by tau protein isoforms with four microtubule-binding domains. In this study, we analyzed a cohort of 229 patients divided into four groups: (1) Parkinson's disease (PD) + dementia with Lewy bodies (DLB) (n = 82), (2) multiple system atrophy (MSA) (n = 25), (3) progressive supranuclear palsy (PSP) + corticobasal syndrome (CBS) (n = 30), and (4) healthy controls (HC) (n = 92). We also focused on analyzing the biomarkers in relation to each other with the intention of determining whether they are useful in distinguishing among individual proteinopathies. Our results indicate that the proposed set of biomarkers, when evaluated in CSF, is likely to be useful for the differential diagnosis of MSA versus 4RT. However, these biomarkers do not seem to provide any useful diagnostic information when assessed in blood serum.

16.
Plant J ; 116(6): 1825-1841, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37682018

RÉSUMÉ

Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.


Sujet(s)
Arabidopsis , Facteur de croissance végétal , Facteur de croissance végétal/métabolisme , Fluorescence , Cytokinine/métabolisme , Acides indolacétiques/métabolisme , Arabidopsis/métabolisme , Réticulum endoplasmique/métabolisme , Hormones/métabolisme , Racines de plante/métabolisme , Régulation de l'expression des gènes végétaux
17.
Nat Rev Neurol ; 19(10): 599-616, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37684518

RÉSUMÉ

The term 'endemic parkinsonism' refers to diseases that manifest with a dominant parkinsonian syndrome, which can be typical or atypical, and are present only in a particular geographically defined location or population. Ten phenotypes of endemic parkinsonism are currently known: three in the Western Pacific region; two in the Asian-Oceanic region; one in the Caribbean islands of Guadeloupe and Martinique; and four in Europe. Some of these disease entities seem to be disappearing over time and therefore are probably triggered by unique environmental factors. By contrast, other types persist because they are exclusively genetically determined. Given the geographical clustering and potential overlap in biological and clinical features of these exceptionally interesting diseases, this Review provides a historical reference text and offers current perspectives on each of the 10 phenotypes of endemic parkinsonism. Knowledge obtained from the study of these disease entities supports the hypothesis that both genetic and environmental factors contribute to the development of neurodegenerative diseases, not only in endemic parkinsonism but also in general. At the same time, this understanding suggests useful directions for further research in this area.


Sujet(s)
Syndromes parkinsoniens , Humains , Syndromes parkinsoniens/épidémiologie , Syndromes parkinsoniens/génétique , Guadeloupe/épidémiologie , Europe , Phénotype , Biologie
18.
Phytochemistry ; 215: 113855, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37690699

RÉSUMÉ

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic-lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.


Sujet(s)
Acides aminés , Oxylipines , Oxylipines/métabolisme , Composés diazonium , Cyclopentanes/métabolisme
19.
J Steroid Biochem Mol Biol ; 233: 106365, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37468002

RÉSUMÉ

Estrogen receptor alpha (ER) is a key biomarker for breast cancer, and the presence or absence of ER in breast and other hormone-dependent cancers decides treatment regimens and patient prognosis. ER is activated after ligand binding - typically by steroid. 2682 steroid compounds were used in a molecular docking study to identify novel ligands for ER and to predict compounds that may show anticancer activity. The effect of the most promising compounds was determined by a novel luciferase reporter assay. Two compounds, 7 and 12, showing ER inhibitory activity comparable to clinical inhibitors such as tamoxifen or fulvestrant were selected. We propose that the inhibitory effect of compounds 7 and 12 on ER is related to the presence of a double bond in their D-ring, which may protect against ER activation by reducing the electron density of the keto group, or may undergo metabolism leading to an active compound. Western blotting revealed that compound 12 decreased the level of ER in the breast cancer cell line MCF7, which was associated with reduced expression of both isoforms of the progesterone receptor, a well-known downstream target of ER. However, compound 12 has a different mechanism of action from fulvestrant. Furthermore, we found that compound 12 interferes with mitochondrial functions, probably by disrupting the electron transport chain, leading to induction of the intrinsic apoptotic pathway even in ER-negative breast cancer cells. In conclusion, the combination of computational and experimental methods shown here represents a rapid approach to determine the activity of compounds towards ER. Our data will not only contribute to research focused on the regulation of ER activity but may also be useful for the further development of novel steroid receptor-targeted drugs applicable in clinical practice.


Sujet(s)
Tumeurs du sein , Oestrone , Humains , Femelle , Fulvestrant/pharmacologie , Fulvestrant/usage thérapeutique , Oestrone/pharmacologie , Récepteurs des oestrogènes/métabolisme , Simulation de docking moléculaire , Lignée cellulaire tumorale , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/métabolisme , Tamoxifène/pharmacologie , Récepteur alpha des oestrogènes/génétique , Récepteur alpha des oestrogènes/métabolisme , Oestradiol/pharmacologie , Oestradiol/usage thérapeutique
20.
Front Plant Sci ; 14: 1156794, 2023.
Article de Anglais | MEDLINE | ID: mdl-37063214

RÉSUMÉ

Dormancy and heteromorphism are innate seed properties that control germination timing through adaptation to the prevailing environment. The degree of variation in dormancy depth within a seed population differs considerably depending on the genotype and maternal environment. Dormancy is therefore a key trait of annual weeds to time seedling emergence across seasons. Seed heteromorphism, the production of distinct seed morphs (in color, mass or other morphological characteristics) on the same individual plant, is considered to be a bet-hedging strategy in unpredictable environments. Heteromorphic species evolved independently in several plant families and the distinct seed morphs provide an additional degree of variation. Here we conducted a comparative morphological and molecular analysis of the dimorphic seeds (black and brown) of the Amaranthaceae weed Chenopodium album. Freshly harvested black and brown seeds differed in their dormancy and germination responses to ambient temperature. The black seed morph of seedlot #1 was dormant and 2/3rd of the seed population had non-deep physiological dormancy which was released by after-ripening (AR) or gibberellin (GA) treatment. The deeper dormancy of the remaining 1/3rd non-germinating seeds required in addition ethylene and nitrate for its release. The black seeds of seedlot #2 and the brown seed morphs of both seedlots were non-dormant with 2/3rd of the seeds germinating in the fresh mature state. The dimorphic seeds and seedlots differed in testa (outer seed coat) thickness in that thick testas of black seeds of seedlot #1 conferred coat-imposed dormancy. The dimorphic seeds and seedlots differed in their abscisic acid (ABA) and GA contents in the dry state and during imbibition in that GA biosynthesis was highest in brown seeds and ABA degradation was faster in seedlot #2. Chenopodium genes for GA and ABA metabolism were identified and their distinct transcript expression patterns were quantified in dry and imbibed C. album seeds. Phylogenetic analyses of the Amaranthaceae sequences revealed a high proportion of expanded gene families within the Chenopodium genus. The identified hormonal, molecular and morphological mechanisms and dormancy variation of the dimorphic seeds of C. album and other Amaranthaceae are compared and discussed as adaptations to variable and stressful environments.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...